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SECTION I

INTRODUCTION

The approach to and landing on an aircraft carrier is a
dtmandinj tas' for any pil, t: ind is one of the most dangerous he
can be called upon to perform. The flight skills required for

the task are uui red pri mar ily by repetitive practice on a
lanid-based runway and in a simulator designed to represent the
criterion device and environment as closely as possible. While
many factors contribute to the carrier-landing problem (e.g.,
poor v isaal cues, limited land ing area, deck movement),
perceptual judgments of vertical position on the flight path and
subseqjuent motor responses are the most critical factors in a
carrier approach (Gold, 1974; Durand and Wasicko, 1967). The
objective of this research is to examine methods of improving
simulator training effectiveness for the critical features of
the carrier landing task.

Flight simulators have long been viewed as substitute
airplanes. They are designed to represent the criterion device
and environment to a reasonable degree of fidelity. The goal of
most flight.simulators is to increase training effectiveness in
a safe and cost-effective manner. However, increased training
effectiveness is often considered to be almost synonymous with
increased simulation realism (Bunker, 1978).

While technological advances such as high detail and larget
field-of-view visual systems, motion systems and G-seats have
increased realism, the major emphasis should be to optimize
skil development in the simulator. Thus, a more appropriato
r-search thrust would focus on principles of learning rather
thatI, development of technology as a path to optimizing skill
development in the simulator.

Emphasic on principles of learning rat her than aI1 ai b i
tt" ednaolog]y tu increase s imul a' or effectiveness reflects an

Srene:s t-hat in appearance (f cortspon(ience with real ity
Iath2r that(l an actual corre,;pondence may be suffici (nt [or
tr aining (St-ples, 1978) . Even an appeuarance of cortespondcnc,
with real it, may be unnecessary, and it may be adeqiato to
provide the ii.-, :isary information for Leaching certain flight
objectives i i anv different ways (Caro, 1977). Furthermore,
departures; from reality may not. only be less expensive but man'y
be more effect ive for teaching flight skills (Hennessy, Lintern,
an d C',] 'Y,.r , l') ,1 ) . For e xa i 1e, the appl ication of

i mia tor' s Freeze/Reset teat ure (freeze pilot in midf 1 ight to
gie f oe (11),,d " k ]ad then reset on course) to teach t h'
carr ier-aindin, task (Hughes, Lintern, Wiglhtman, Brooks, and

If ng ,.ton, 1981) , and the use of unconventional displays (e.g.,

0. - o ... ° . .
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outside viewpoint from behind the aircraft, or fl !;ht
instruments only) to teach basic flight tasks (Hennessy et al.,
1981) have been examined in recent experiments.

Stark (1982) has also suggested that today's advan-ed
simulation technology be applied to support individual trainir,j
problems. Stark suggests that difficult and important skill 
and skill components should be trained outside the whole-ta ..
context in low cost but high-fidelity training settings designed
to mediate only that information relevant to a specific task or
task component.

'The current s,]dy is an extension of this concept a r I
philosophy of training and will explore the usefulness cl
part-task instruction and two methods of display augmentation
for teaching the carrier-landing task.

PART TASK TRAINING

Part-task training is generally regarded as practice or I
portion of the whole task prior to practice on the whole tasK.
one part-task approach is to identify the specific components of
t he whole task that are either difficult to learn or are
critical to the acquisi tion of the task. These components can
then be subjected to extensive practice before the total skill
is learned. This procedure may lead to a more rapid acquisition
of the task and possibly better transfer to the 4hole task. A
modest amount of transition training would almost certainly be
required to coordinate component skills, but extensive practice
in a high fidelity, whole-task simulator would probably be
unnecessary (Adams and Hufford, 1962).

Al though some basic research has been d one on pairt-t_,;K
v'rsu'; whole-task training, little has been undertak,,n with',
multi-dIimensional perceptual-motor tasks and even less wit h
operationally relevant tasks such1 as carrier-landings.
Nvertheless, the basic research provides some insight into theu
ipplication of part-task training to operational tasks.

fir iggl; aind Wators (1958) use(] a pi tch-and-rolI t aki

t.t";k tro ;totidy t he value of task component interact io( in par -
V/I,-7 .: who ,-t Ik training. They found that IraCt ice

: I'liv id mal c'imponit:; was progressively less beneficial, a:; i
d ' of o p,,rn (part) interaction was inctuas d in th110

It nsf, r or whl, It ti;k.

nd, '1T I:; (1963) used a prediction t ype i -k
t t h1 .. . I,? -s of taisk complexity and task organizatirn in

St- veri:r; wtlI ask training. They found that prt-tat
t-raining w,'; I, ,:;:; e(ffective than whole-task training for a
,,:rit, r if)n t, :;k of high difficulty and hijh comp-,ne r'
in terat ion.

2
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Schendel, Shields and Katz (1978), in a review of the

literature on variables known to affect the retention of learned
motor behaviors, states the effectiveness of part-task as
opposed to whole-task training methods varies with the
difficulty of a task's independent subtasks and the degree to
which the subtasks are interrelated. They stated that:

"It generally is easier to learn simple to
moderately difficult tasks using whole-training methods
rather than part-training methods, whereas the opposite
is true for more difficult tasks.

"Tasks requiring high coordination and timing of
their serial-motor components are learned faster using
whole-training methods. In contrast, part-training
methods tend to be more effective for tasks that can be
divided in meaningful independent subtasks.

"There appears to be an interaction between task
difficulty and task organization that influences the
relative effectiveness of part- and whole-training
methods. Thus, training for tasks of high organization
becomes increasingly more effective with whole practice
as task difficulty increases. On the other hand,
training for tasks of low organization is increasingly
improved by part practice as task difficulty
increases."

The carrier-landing task is difficult and requires
considerable coordination of motor components. The basic
research indicates that a part-task approach to training is not
advisable in this type of situation. Briggs and Waters (1958)
suggested that this is so because subjects are unable to learn
how specific components of the task interact when the components
are practiced separately. Concurrent practice is needed to
learn how specific components interact in a highly organized
task. Briggs and Naylor (1962) also argued that similarity to
the transfer task and the opportunity to develop efficient
tiresharing behavior (concurrent practice of task components)
,ire both needed for effective learning on complex tasks. Thus,
part-task training may be inefficient in a difficult task with
interdependent components for two reasons. The training and
transfer tasks are dissimilar, but more important, there is no
opportunity to learn to timeshare interacting task components.
Thus, a part-task training strategy that allowed efficent
timesharing and learning of subtask interactions would provide
efficient transfer for a difficult task with interdependent
components. The carrier-landing task is suitable for testing
this hypothesis and the following description of the task will
be used to suggest a possibly effective approach to part-task
training.

3
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For a carrier approach (Figure 1), the pilot attempts to
follow a designated glideslope (oblique path) so that a hook
attached to the tail of the aircraft will contact the landing
deck midway between the second and third of four arrestment
wires (cables laid across the landing deck). The wires are at
different distances from the ramp (threshold of the landing
deck). Under the aircraft's momentum the hook travels forward
to snag the third wire for a trap (arrested landing). The first
or second wire may be caught on a low approach and the fourth on
a high approach. Very low approaches can result in a ramp
strike (collision with the stern of the carrier) while high
approaches can result in a bolter (a missed approach because of
touchdown beyond the wire arrestment area).

The pilot must not only maintain a precise glideslope but
also must simultaneously maintain the correct angle of attack
(angle at which the wing moves through the air), airspeed,
vertical velocity, and lineup with the landing area. If the
pilot maintains position and velocity errors within acceptable
limits, he will execute a successful touchdown and trap (Gold,
1974). Although all task dimensions are essential to safe and
successful carrier-landings, glideslope control is the most
critical and difficult.

The part-task training method proposed here is to freeze
the aircraft at a point along the carrier approach so that the
subject cannot fly forward to land on the carrier. The
simulated aircraft will be permitted to move along all except

* its lateral axis. The rationale for this part-task strategy is
outlined below:

1. Subjects will have intensive glideslope tracking
practice in a less complex task. Briggs and Waters (1958)
Sugested a simplification method of part-task instruction may
te appropriate for a task with interdependent components.
Holding (1962) also argues that positive transfer can occur
following task simplification as long as proper information is
provided for error detection and correction.

2. All piloting tasks except lateral control will be
timefs1ared. This will provide knowledge of interaction of the
waore critical components. The lack of lineup practice was not

tr'l_;i, i ered ser io u;. Lineup control does not constitute a major
[problem in the carrier landing and the experimental task will
require appropriate left and right stick responses to maintain
heading lined up with the landing deck. Thus, a few trials of
transi Lion training in the whole task is expected to be
sufficient to coordinate the skills essential for lateral
control .

In summary, this part-task training strategy allows
extensive practice on error detection and correction of the most
difficult and critical component of the carrier-landing task,

4
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glideslope control. Secondly, the strategy provides knowledge
of component interaction which apparently is necessary for a
task with interdependent components. The point on the
glideslope that was chosen for the part training resulted in a
task of moderate difficulty, and was a point in a normal
approach at which fine control responses start to become
critical.

FLOLS TYPE

Pr -- imary i_1eisl:ope displacement information for a carrier
,pproach i.s provided by the Fresnel Lens Optical Landing System

FLOLS) . It- C( t of light sources behind five vertically
.tacked Fresnel lenses that are situated between two horizontal
li'ght arrays known as datum bars. The array of lenses and lamps
provide a virtual image which appears to the pilot as a single
light located 150 icet behind the datum bars. This light, known
as the meatball, is visible to the pilot through the center lens
when he is within 9.5 minutes of arc of the glideslope and is
Seen as level with the datum bars. As the aircraft moves more

* than 9.5 minutes of arc above or below the glideslope, the
meatball is seen through higher or lower Fresnel lenses to give
the appearance of a light moving vertically above or below the
line of the datum bars (Figure 1).

Although the FLOLS provides the primary displacement
information for glideslope control, it has long been recognized
that the system is less than optimum (Brictson, 1967; Perry,
1968) . Because the information from the meatball is of
zero-order (displacement only), there are substantial lags
between incorrect control inputs and the subsequent error
information from the FLOLS. That is, a rate (first-order) errnr
rils-t exist for some short period of time before it produces a
perceptible displacement (zero-order) error (Kaul, Collyer, and
[intern, 1980).

One technique to compensate for the lags between control
inlputs and subsequent error information would be to add a
first-order component to the zero-order component that is
indicated hy the meatball. However, this is less than desirable
."n" ho1 piI )t would no longer have unambiguous information
d,,,t hi:; pos;ition above or below the glideslope. Kaul et al.

S'W;!) overca,,me this problem by adding another element to the
.,: ,is;play. Vertical light arrays appearing as bars;

* trq ir t )p or down from the inside of the datum bars we rc
, I :th'~ FIS to provide a first-order display with no lossi

* 4 ;I: irrm~iat im)presently available from the meatball.

tl t al2. tested two configurations of the vertical
, *. ii, on, the algorithm drove the arrows up or down
j . i n j ):t wh, thr the meatball was moving up or down. This
- J , I,:;i jrIIt(d the RATE display. In the other, the algorithm

itr vt thf, vertical bars in proportion to the difference between

6 6
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the actual and the ideal descent rates so that null indications

from the arrows would return the pilot to, or maintain him on,
the glideslope. This was designated the COMMAND display.

Results of that study showed that the approach pe forman .,
with the COMMAND display was more stable and accurate than with
the CONVENTIONAL display. Root mean square (RMS) glidesl pe
error scores (standard scores used to measure performance oun ai
tracking task) for the CCMMAND display were 40% to 50% bett-,
than those for the CONVENTIONAL display. Performance with the
RATE display tended to lie between performance with the
CONVENTIONAL and COMMAND displays (Kaul et al., 1980) . The
considerable performance enhancement induced by these
first-order displays suggest their potential as a training aid.
Wel ier (1979) has argued that first-order displays might t earch)
approach glideslope control techniques for carrier landing and
these first-order displays might even help students learn to e
a conventional FLOLS display more effectively.

Although Westra (1982) found no differential transfer
advantage following instruction with the COMMAND display, the
substantial performance advantages shown by Kaul et 'l.
prompted a further test. Westra had chosen the COMMAND display
for his training experiment because it had induced the mo-ore
powerful performance effects in the early experiment by Kaul et
al . fowever, it is also apparent that the COMMAND display
permits students to fly the glideslope accurately without
attending to the conventional displacement information. A
dependency on the command information may develop that wuil
disrupt performance on transfer to the CONVENTIONAL display. ,;I
the other hand, the RATE display does not permit total neglect
)f the conventional displacement information. Thus, di sr uptio'
dependencies are less likely to develop. The possibility t1hft
the RATE display is a better choice for training systems is also
si1pported by Pew (1966) who showed a performance advantage in
t r,-n:;fer from a rate tracking display to a displacement ti a'Ki I
system. As the theory and knowledge surrounding the use of the
1-i r st-ord(er d i splays for both performance and learnin ;
neajer, oth were examined in this experiment.

I V,) K; ; j I-;

In t rel nnvironment, the FLO LS diplay is generat f[,
in -l e n t lights. In a flight simulator, it i :: i-,

Ooin'd ,lent and less expensive t.o generate a FLO[1:: imqe 111
(ompu t er . B eca use the FLOLS is relatively small and mist I..
pr',ivd accurately, a high-fidel ity visual simu] itor i
r e.-ii red t. represent it at- it. true rel at ive ;i ,

SAIt .rr,-it ivI y, the FLOLS might he rept esen,, t ,] as l arger t hi t'nrmal ,i z'. The issue of whether the sze of a simulated [

n,-,,; to orrespond to its 3ize in the real -l vironnent r em ii:;
unresolved. From an engineering perspective, a large FLOL,

7
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would be advantageous because to simulate the FLOLS display
accurately would require a high-detail and costly visual system.

From a training perspective, a large FLOLS may or may not
be advantageous. An oversize FLOLS might also be regarded as an
augmenting cue and may help the student make better sense at
what he is seeing when flying the simulator (Hennessy et al.,
1981) as did the augmented feedback used by Lintern (1980) to
teach landings in a light aircraft. Thus, FLOLS size was

* included in the experiment to examine its relative effectiveness
*+ for simulator training.

In summary, this experiment was conducted to investigate
methods of improving simulator training effectiveness of the
carrier landing task. A segmentation method of part-task
traininrg vs whole-task training and two visual factors, FLOLS
type and FLOLS size, were investigated at the Visual Technology
esearch Simulator. FLOLS type consisted of the conventional
FLOLS display and two first-order displays, RATE and COMMAND.
FLOLS size consisted of small and large simulated FLOLS.

*8
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SECTION II

METHOD

APPARATUS

The Visual Technology Research Simulator (VTRS), described
elsewhere by Collyer and Chambers (1978), consists of a fully
instrumented T-2C Navy jet trainer cockpit, a six
degree-of-freedom synergistic motion platform, a 32-element
G-seat, a wide-angle visual system that can project
computer-generated color images, and an Experimenter/Operator
Control Station. The motion system and G-seat were not used in
this experiment.

The T-2C is the Navy's primary jet trainer. It is a twin
turbojet, subsonic aircraft. All major T2-C controls and
displays are simulated in the VTRS. Carrier arrested landing
and catapult takeoff capabilities are also provided.

The visual display is a full-color wide-angle real image
presented on a 10-foot radius spherical screen. The entire
display system, consisting of the screen and two projectors, is
mounted on the motion base.

The experimenter/operator station provides the capability
of interacting with the computer and flight simulator for the
purpose of developing, controlling, and monitoring the
experiment.

VISUAL SYSTEM. The background subtended 50 degrees above to 30
degrees below the pilot's eye level and 80 degrees to either
side of the cockpit. The carrier image, a daytime
representation of the USS Forrestal (CVA 59), was generated by
computer and projected onto the background through a 1025-line
video system. The FLOLS and carrier wake were also generated by
this method (Figure 2).

Average delay between control inputs and generation of the
corresponding visual scene was approximately 117 msec.
Calculation of new aircraft coordinates required 50 msec, while
calculation of the coordinates for the visual scene
corresponding to the viewpoint from the new aircraft coordinates
required 17 msec. An updated visual scene was displayed every
33 msec.

9
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Figure 2. Computer-generated image of the day
carrier with FLOLS and portion of wake.

40
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The sky was light blue and brightness was approximately .12
foot-Lambert (fL). The seascape was dark blue and brightness
was approximately .45 fL. The brightest area of the carrier was

approximately 2.6 fL. Except for the horizon, there were no
features represented in either the sky or sea.

The configuration of the FLOLS is shown in Figure 3. The
FLOLS was centered 414 feet down the landing deck and 61 feet to
the left of the centerline. It was set at a nominal 3.5 degree
glideslope and with a lateral viewing wedge of 52 degrees.

EXPERIMENT

Three training factors--task configuration (part vs whole),
FLOLS type, and FLOLS size--were investigated as possible
training aids for the carrier landing task. After 30 trials on
one of the training conditions, subjects were transferred for
another 30 trials to the criterion configuration. Performances
in the transfer phase were used to assess the differential
effects of the training conditions.

TASK CONFIGURATION. For the whole-task condition, the simulator
was initialized with the aircraft at 9000 feet from the ramp, on
glideslope and centerline, and in the approach configuration
(hook and wheels down, speed brake out, 15 units Angle of Attack
(AOA), half flaps, and power at 83%). A trial was flown from
the initial condition to wire arrestment or, in the case of a
bolter, to 1000 feet past the carrier. The carrier was set on a
heading of 360 degrees at 20 knots. Environmental wind was set
to produce a relative wind component of 25 knots down the deck
with no effective crosswind.

For the part-task condition, the simulator was initialized
with the aircraft at 1800 feet from the ramp, on glideslope and
centerline, and in the approach configuration (hook and wheels
down, speed brake out, 15 units AOA, and half flaps). Power was
set at 85% with vertical velocity set at approximately zero
feet/minute. Ground position was frozen so that the simulated
aircraft could not converge on the carrier nor deviate from
lineup. All other control responses were the same as for the
whole-task condition. A trial was flown for 60 secondls after
release from the initial condition. Sixty seconds of practice
in the part-task conaotion corresponded approximately to the
amount of time required to fly a whole approach (9000 feet to
the ramp). The carrier was set on a heading of 360 degree.- at 0
knots with no environmental wind to produce relative wind
conditions similar to those of the whole task.

FLOLS TYPE. There were three levels of this factor. The
* conventional version of the FLOLS was one and the other two

involved the use of vertical bars added to the conventional

11
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FLOLS (Figure 3,. The vertical bars provided glideslope rate of

displacement iriformation to the subjects. The two levels were
designated RATE and COMMAND.

For the RATE display, the algorithm (Kaul et al., 1980)
drove the arrows in proportion to the difference between actual
descent rate and the descent rate that would maintain present
glideslope angle with respect to the FLOLS (Figure 4).

For the COMMAND display, the algorithm (Kaul et al., 1980)
drove the arrows in proportion to the difference between the
glideslope displacement rate and a commanded rate that was a
function of glideslope displacement. For a given aircraft
velocity, range and glideslope deviation, the command function
would guide the pilot back to the glideslope at the optimum rate
(Figure 4).

FLOLS SIZE. The FLOLS has a few critical elements that are
relatively small. When represented at true scale in the VTRS,
some of the elements were so small that the line-raster
projection system caused them to flicker excessively as they
cros ed raster lines. The flicker can be avoided by making the
FLOLS larger than it should be. One goal of this experiment was
to assess whether a size differential in the FLOLS would affect
acquisition of the task.

Even the smallest possible representation of the FLOLS had
to be larger than true scale but it would be represented closer
to true scale as the simulated aircraft neared the ramp. A
shrinking algorithm was used to reduce the size of the simulated
FLOLS during the approach. Two different shrinking algorithms
were used to establish the FLOLS size factor. The small FLOLS
was enlarged by a factor of 2.0 times its normal size when the
distance behind the ramp was greater than 1000 feet. From 1000
feet, the size of the FLOLS was linearly reduced until it
attained 1.5 times its normal size at 750 feet. It remained
this size throughout the remainder of the approach. The large
FLOLS was enlarged by a factor of 4.5 its normal size when the
distance behind the ramp was greater than 2250 feet. From 2250
feet the size of the FLOLS was linearly reduced until it

attained 1.5 times its normal size at 750 feet. It remained
this size throughout the remainder of the approach. At 1800
feet from the ramp (the part-task training position), the large

FLOLS was enlarged by a factor of 3.6.

SUBJECTS

Thirty-six male college students between the age of 18 and
28 participated in the experiment at the Naval Training
Equipment Center (NTEC). All subjects were paid volunteers with
no flight experience.

13



NAVTRAEQUIPCEN 81-C-0105-9

(a) A static CONVENTIONAL display does not permit a trend
interpretation. For the RATE display this figure
indicates that the one-ball high condition will be
maintained, while for the COMMAND display that the
pilot is returning to the reference glideslope at an
appropriate rate.

(b) For the RATE display this figure indicates one-ball
high and going higher in relation to the reference
glideslope. For the COMMAND display it indicates that
the aircraft is high, and is not returning to the
glideslope quickly enough (and may even be going
higher).

*. - (c) For the RATE display this figure indicates that the
pilot is returning to the glideslope, while for the
COMMAND display that he is returning to it too
quickly and will probably fly through it.

Figure 4. Three representations of possible RATE or
COtIMAND displays. Figure 4(a) can also
represent a CONVENTIONAL display.

14
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EXPERIMENTAL DESIGN

A 2x2x3 full factorial quasi-transfer of training design
was used in the experiment. Subjects were randomly assigned to
one of the training conditions of the basic design. After
training all subjects were then tested on the condition that
most closely represented the carrier-landing task; that is, the
9000 feet whole-task approach with the CONVENTIONAL display and

" small FLOLS (Table 1)

TABLE 1. TRAINING CONDITIONS

Conventional Rate Command

Small Ill* 112 113
FLOLS

Who 1 e
Task

Large 121 122 123
FLOLS

Small 211 212 213
FLOLS

Part
Task

Large 221 222 223
FLOLS

Condition Codes:

Whole Task = 1 Part Task = 2
Small FLOLS = 1 Large FLOLS = 2
Conventional = 1 Rate = 2 Command =3

* Also used in the transfer configuration for all groups.

PROCEDURES

Subjects were given a 1.5-hour briefing on carrier-landing
procedures. Their simulator sequence consisted of 30 training
trials and 30 transfer trials over a two-day period. No
familiarization flights were permitted. Instructional feedback
on their performance was given by the experimenter after each
training trial. Feedback for lateral control was given on the

S 15
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first three transfer trials. There was no instructional
feedback on the remaining transfer trials.

BRIEFING. The briefing materials consisted of information on
carrier-landing procedures for each subject, and information on
their specific training condition. A complete set of briefing
material can be obtained from the VTRS facility. Subjects read
the briefing materials and were then instructed on
carrier-landing procedures. The experimenter also described the
location of cockpit instruments and controls.

INSTRUCTIONAL FEEDBACK. Normally, the Landing Signal Officer
(LSO) provides feedback to the pilot during an approach.
However, the services an LSO could not be secured for this
,xperiment. While this might initially appear unfortunate, it

La:; Leen difficult in previous research to ensure that LSOs or
insZ.ructUrs treat all subjects similarly. A tendency to offer
mork. .upport uas.di on the way the student performs has been
noted. In this experiment, where student performances should
4 depend to some extent on their training condition (Lintern et
al., 1981), any tendency to give extra assistance to poor
p-.: formances could confound the results of the experiment.

In an attempt to maintain experimental control of
4t.,_1f',t /instructor interactions, personnel with a psychological
h,i:kground were trained to teach the required skills. While
t-. a I pproach may lose something in the quality of instruction,
that loss would seem to be offset by gains in experimental

This approach appeared to have worked successfully in
a previous carrier-landing experiment where the experimenter
provided feedback to Navy and Air Force pilots after each
approach (Lintern et al., 1981).

The experimenter gave instructional feedback after every
tirainjnq trial. To aid in the instructional feedback, a graphic

, provided plots of glideslope deviation, angle-of-attack
-vi ition, lineup deviation, vertical velocity, aircraft pitch,
I ;p)wer setting. Plots were provided for the final 6000 feet

of ti'e whole-task condition and the entire 60 seconds of the
* ir t-task (;ondition. Feedback was limited to major problems or

Sr)rs that occurred during the trial.

"V ARIAT, TASK. In simulation research, individual differences
* -nd L() account for much of the unexplained variance (Westra,

One method of reducing the unexplained variance is to
*,,s:; subject aptitude for the task and account for some of the
i)LW'weeri-subject variance through an analysis of covariance. An
ATAP I video game was selected as a covariate since prior
r, '; , had shown a high test-retest reliability and other
g ),,rlcteristics desirable in a covariate (Jones, Kennedy and
P, it tner, 1981). Furthermore, the ATARI video game is a
:,) 'lp r. r;3tr()ry tracking task as in the carrier-landing task
(Lint,,rn and Kennedy, 1982)

* 16
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Subjects were tested with the ATARI Air Combat Maneuvering
(ACM) game (Cartridge CX2601, game No. 24, difficulty 'b',
right controller) prior to their flight in the simulator. All
subjects completed a total of 30 games. A subject's score for
one game is the total nmber of hits during a 2.25-minute trial.

PERFORMANCE MEASUREMENT AND DATA ANALYSIS

Parameters of aircraft position were sampled at 30 Hz and
used to derive summary scores from the desired approach path for
the following segments.

Segment Whole Task Park Task

Start 6000 ft to 4500 ft 21 sec to 30 sec
Far-Middle 4500 ft to 3000 ft 31 sec to 40 sec
Middle 3000 ft to 1500 ft 41 sec to 50 sec
Close-In 1500 ft to Ramp 51 sec to 60 sec

Root-Mean Square (RMS) error scores were calculated for
glideslope, lineup and angle of attack. Mean algebraic error
scores were also calculated for glideslope.

Repeated measures analyses of covariance were the primary
statistical tests of the data. Orthogonal comparison of main
effects of Trials 1-5 vs 26-30, 6-10 vs 21-25 and 11-15 vs 16-20
were computed to assess interactions of effects with trials.
This analysis gives similar information to the main effects X
trial block interactions of the main ANOVA, but provides a more
powerful test of initial and brief effects at time of transfer.
It was considered advisable to undertake this test and set
statistical significance at the 0.10 level in view of the
limited power allowed by the small number of subjects available
for this experiment. The power analysis showing the probability
of detecting a large, medium, or small effect of RMS glideslope
error for the middle (3000 ft to 1500 ft) and close-in (1500 ft
to ramp) segments are presented in Appendix A. The data was
also blocked (5-trial means) to increase trial-to-trial
reliability. Eta squared was calculated to estimate the
proportion of variance accounted for by significant effects.

17/18
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SECTION III

RESULTS

Statistical analyses were conducted on both the training
and transfer data. The training data were analyzed to check the
effectiveness of the factor manipulations and to show that
learning occurred. The transfer data were analyzed to show the
effects of the training manipulations on performance of the
criterion task.

Data analyses are presented on Root Mean Square (RMS) and
average glideslope error, RMS Angle-of-Attack (AOA) error and
RMS lineup erroi for the middle (3000 ft to 1500 ft) and
close-in (1500 ft to ramp) segments of the approach. The middle
segment was selected for analysis because it contained the
position at which the part-task subjects were trained. In
addition, it was the last segment to maintain a substantial task
ditference for the FLOLS-size factor. There was no task
difference as a result of this factor in the final 1000 feet of
the approach. The final segment was considered for analysis
because it is the most critical segment of the task.

Preliminary analysis of the data to check for normality,
symmetry and homogeneity of variances showed the RMS error
scores to be highly skewed with unequal variances. Thus, RMS
error scores were log (X+l) transformed prior to analysis of
variance to satisfy the assumptions of normality and homogeneity
of variance. Although transformation to correct for violation
of these assumptions is often considered unnecessary, the
failure to do so can result in a loss of statistical power
(Levine and Dunlap, 1982). As there was no apparent
disadvantage resulting from the transformation, and there were
specific theoretical advantages, the log transform was applied
routinely to all RMS scores. For descriptive purposes, means of
nontransformed scores are presented in tables and graphs.

The proportion of variance (eta squared) accounted for by
significant effects is also discussed. Following Cohen (1977),
values for eta squared of 14% are considered to represent large
effects, 6% to represent medium effects, and 1% to represent
small effects.

TRAINING DATA

Trends in training data, although informative, are not
central to training issues. The best use of training data are
to check for learning trends and to validate factor
manipulations. Significant effects are summarized in Table 2.
Means and repeated measures' analysis of covariance summaries

19
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TABLE 2. SUMMARY OF SIGNIFICANT TRAINING EFFECTS

RMS Glideslope Average Glideslope RMS An le of
Error Error AttaRIE-rror

Middle Close-In Middle Close-In Middle Close-In

Task (Ta) *

FLOLS Size (FS)
* FLOLS Type (FT)

Ta X FS** *

Ta X FT
FS X FT

* Ta X FS XFT
* Covariate

* Blocks (B) ***** ****

B X Ta*
X FS

B X FT
*- B X Ta X F'S ***

B X Ta X FT
B X FS X FT *****

BX Ta X FS XFT

p < .10
*:p < .05

**:p < .01

* 20
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are presented in Tables B-i to B-12 in Appendix B. No training
data are presented on RMS lineup error since the part-task
subjects could not deviate from lineup.

Significant learning effects were apparent for the three
*dependent measures that are analyzed (Table 2). They accounted

for an average of 31% of the within-subjects experimental
variance (Tables B-i to B-6). RMS AOA error was significantly

* higher with the whole task than with the part task (Table 2).
There were no other significant main effects.

The task by FLOLS size interaction was significant for RMS
and average glideslope error. These interactions are shown in
Figures 5 and 6. The large FLOLS reduced RMS glideslope error
with the whole task but increased them with the part task. The
opposite was true with the small FLOLS. Average glideslope
error indicated that approaches tended to be higher with the
conditions showing highest RMS glideslope error.

Two interactions with trial blocks also appear to be
noteworthy. The block by task by FLOLS size interaction for RMS
glideslope error is diagrammed in Figure 7. This interaction
appeared to be due to the differences in error scores in the
first 10 trials. The error scores were higher for the whole
task with the small FLOLS and for the part task with large
FLOLS. Similar trends were found with average glideslope error.

The blocks by FLOLS size by FLOLS type interaction was also
significant for the RMS glideslope error in the middle segment,
and for RMS AOA error in both segments. Higher error scores
were apparent in early trials with the large FLOLS and the rate
display. Higher error scores for RMS AOA were also apparent in
early trials with the small FLOLS and the command display.

TRANSFER DATA

The transfer trials consisted of the experimental training
condition most representative of the operational carrier-landing
Lask (9000 ft straight-in approach, conventional and small
FLOLS). Significant transfer effects are summarized in Table 3.
Means and repeated measures analysis of covariance summaries are
in Tables C-i to C-16 in Appendix C.

GLIDESLOPE ERROR. With only minor exceptions, RMS and average

glideslope error effects showed similar trends (Table 3). The
only significant main effect was that of task type. RMS
glideslope error scores were higher following part-task
training. Average error scores indicated a tendency for all
subjects to fly above the glideslope, but the part-trained
subjects flew significantly higher than did the whole-trained
subjects. These effects accounted for an average of 14% of the

between-subjects experimental variance.
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TABLE 3. SUMMARY OF SIGNIFICANT TRANSFER EFFECTS

RMS Glideslope Error Average Glideslope Error

Middle Close-In Middle Close-In

* ~Task (TA) ***

FLOLS Size (FS)
FLOLS Type (FT)

* Ta XFS
Ta X FT
FS X FT
Ta X FS X FT *

Covar jate

Blocks (B) *****

B X Ta * * *

B X FT

B ' Ta X FS
B XTa XFT*
B X FS X FT
B X Ta X FS X FT

RMS AOA Error RMS Lineup Error

Middle Close-In Middle Close-In

Task (Ta)
FLOLS Size (FS)*
FLOLS Type (FT)

q Ta X FS
Ta XFT *

FS XFT
.9Ta X FS XFT*

Covariate **

Blocks (B)***
B XTa *

B X FS
B BXFT **

B X Ta X FS ****

B X Ta X FT
B X FS X FT
B X Ta X FS X FT

**p: < .10
**p: < .05

***p: < .01
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Significant block effects indicated that glideslope errors
decreased throughout transfer. As shown by the significant
block by task interactions, part trained subjects performed very
poorly in early transfer, but were only slightly disadvantaged
in relation to the whole-trained subjects towards the end of the
transfer phase (Figures 8 and 9). These interactions accounted
for an average of 9% of the within-subjects experimental
variance.

There was a block by task by FLOLS type interaction in the
middle segment for RMS glideslope error (Table 3). Figure 10
suggests that this interaction resulted from poor early transfer
performances of part trained groups. However, subjects trained
on the part task with the RATE display had the lowest error
scores among part-trained subjects at the start of transfer, and
these error scores remained consistently lower throughout
transfer. Figure 10 also shows that subjects trained on the
whole task with the CONVENTIONAL display had the lowest error
scores throughout transfer.

There were various significant interactions of FLOLS type
comparing trials 1-5 versus 26-30 for both RMS and average
glideslope error. These interactions are summarized in Table 4.
In general, a significant interaction of this type indicates
that the magnitude of differences between conditions changed
from early in transfer to late in transfer. An interaction
effect of this type would also be indicated by a significant
blocks by factor interaction in the ANOVA. However, the
statistical power of the test in the ANOVA was low because of
the small number of subjects available for the experiment. The
procedure employed here was used because of its potential to
provide a more powerful test of block by factor interactions.

Figures 11-A and 11-B show RMS glideslope error was lower
for subjects trained with the COMMAND display versus those
trained with the CONVENTIONAL display in trials 1-5. Later in
transfer (trials 26-30), subjects trained with the CONVENTIONAL
display had surpassed those trained with the COMMAND display.
Figure 11-C also shows RMS glideslope error was lower for
subjects trained with the RATE display versus those trained with
the CONVENTIONAL display in trials 1-5, but this effect quickly
dissipated.

While subjects tended to fly above the glideslope in early
transfer trials, this tendency was more extreme after training
with the CONVENTIONAL display than after training with the RATE
display (Figure 12). The tendency for CONVENTIONAL trained
subjects to fly higher on the glideslope continued through

4 transfer trials 11-15, but not thereafter.

There was an interaction of FLOLS size for the comparison
of trials 6-10 versus 21-25 in both the middle segment (F(1,120)
=4.50, p < .05) and close-in segment (F(1,120)=4.48, p < .05)
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*TABLE 4. SUMMARY OF FLOLS TYPE INTERACTIONS
COMPARING TRIALS 1-5 VERSUS 26-30
FOR RMS AND AVERAGE GLIDESLOPE ERROR

RMS Glideslope Error

Factor Segment F Prob

Conventional vs COMMAND Middle 3.50 *

Conventional vs COMMAND Close-in 6.19 **

Conventional vs RATE Close-in 2.92 *

Average Glideslope Error

Factor Segment F Prob

Conventional vs RATE Middle 5.42 **

Conventional vs RATE Close-in 4.79 **

*p: < .10
**p: < .05
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Figure 11. FLOLS type interactions of Rms glideslope
* error during transfer.
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for RMS jlideslope crror. Error scores were lower for subjects
trained with the large FLOLS versus those trained with the small
FLOLS in trials 6-10. A slight reversal occurred in trials
21-25 and RMS glideslope error in this transfer block was lower
for subjects trained with the small FLOLS versus those trained
with the large FLOLS (Figure 13). There was no difference at
the. end of transfer in the critical close-in segment.

There was a significant interaction of task by FLOLS type
by FLOLS size in the close-in segment for RmS glideslope error
(Table 3). Transfer performance was superior for whole-task
t[,jlninJ conditions except when part-task training was combinced
with the RATE display and small FLOLS (Figure 14). Transfer
performance following training with the part-task, RATE display,
and small FLOLS condition was as good as performance under any
of the whole-task conditions, This interaction accounted for
15% of the between-subjects experimental variance in the
close-in segment.

The ATARI covariate was significant in the close-in segment
for RMS glideslope error (Table 3). Performance on the ATARI
video game accounted for a substantial 19% of the
between-subjects experimental variance in this segment.

RMS ANGLE-OF-ATTACK. There were no statistically significant
main effects for the transfer trials (Table 3).

There was a block by task interaction and a block by FLOLS
type interaction in the middle segment (Table 3). Figure 15-A
indicates that the block by task interaction was significant
because of an upturn in the RMS AOA error scores for the
part-trained subjects toward the end of transfer. This block by
task interaction accounted for 4% of the within-subjects
experimental variance in the middle segment. Figure 15-B
indicates that the significant block by FLOLS type interaction
resulted from a sharp improvement in RMS AOA error for the
COMMAND trained subjects in early transfer, followed by a
similarly sharp deterioration in later transfer. This block by
FLOLS type interaction accounted for 10% of the within-subjects
experimental variance in the middle segment.

There were various significant interactions comparing
trials 1-5 versus 26-30 for RMS AOA error. These interactions
are summarized in Table 5. RMS AOA error was lower for subjects
trained on the part task versus those trained on the whole task
in trials 1-5. This effect is consistent with the block by task
interaction previously noted for this segment.

Figures 16-A and 16-8 show RMS AOA error was lower for
subjects trained with the COMMAND display versus those trained
with the CONVENTIONAL display in trials 1-5. These error scores
continued to be lower through transfer trials 21-25, but the
trend was reversed in trials 26-30. Figures 16-C and 16-D also
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transfer.

36



- -'--- .- '--w' - . -. - - - n..' -. - -. - . - - - . - - .*- _ - .- -. - , - .- - I

NAVTRAEQUIPCEN 81-C-0105-9

TABLE 5. SUMMARY OF TASK TYPE, FLOLS TYPE,
AND FLOLS SIZE INTERACTIONS COMPARING
TRIALS 1-5 VERSUS 26-30 FOR RMS AOA ERROR

Task Type

Factor Segment F Prob

Part versus Wnole Middle 3.77

FLOLS Type

Factor Segment F Prob

Conventional versus Command Middle 5.42 **

Conventional versus Command Close-in 3.79 *

FLOLS Size

Factor Segment F Prob

Large versus Small Middle 6.88

Large versus Small Close-in 5.51 **

*: p < .1)
•**: p < . 5

p < .05

4
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* Figure 16. FLOLS type and FLOLS size interactions of
RMS angle-of-attack error during transfer.
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show RMS AOA error was lower for subjects trained with the small
FLOLS versus those trained with the large FLOLS in trials 1-5.
A reversal occurred in trials 26-30 in the close-in segment.
RMS AOA error in trials 26-30 was lower for subjects trained
with the large FLOLS versus those trained with the small FLOLS.

There was a block by task by FLOLS size interaction for
both segments (Table 3). Figure 17 shows that in the middle
segment, subjects who had trained with the whole task and lorge
FLOLS started the transfer phase with the highest AOA error

- cores and that trend continued throughout transfer. Subjects
who had trained with the part-task and small FLOLS started the
transfer phase with the lowest error scores. However, the
interaction in the critical close-in segment was only moderately
significant (p < .10) and was not as well defined. subjects
trained with tne whole task and large FLOLS had lower AOA error
scores at the start of transfer versus those trained with the
whole task and small FLOLS. There did not appear to be any
difference between these two conditions in the remaining
transfer trials for this segment.

The ATARI covariate was moderately significant in the
close-in segment and accounted for 10% of the between-subjects
experimental variance.

RMS LINEUP ERROR. The only significant main effect for the
transfer trials was that of FLOLS type in the middle segment
(Table ?). ILMS lineup error was lower for subjects trained with
the RATE and CONVENTIONAL displays versus subjects trained with
the COMMAND display. The Newman-Keuls Test for comparison of
the mean differences between the RATE and COMMAND display and
tle CONVENTIONAL and COMM\ND display approached significance at
the .05 level. This effect accounted for 9% of the
between-subjects experimental variance in the middle segment.

There was a significant FLOLS size by FLOLS type
interaction for both segments (Table 3) Figure 12 indicatu';
that subjects trained with the small FLOLS and RATE display had
the lowest error scores. The FLOLS size by F[.OLS type
interactions accounted for an average of 12% of the
between-subjects experimental variance.

There was a significant block by task interaction and bloc,
by FLOLS type interaction in the close-in segment (Table 3). As
expected, subjects trained with the part task had hiqher error
sAres ,t the start of tririsfet , but rapidly iinproved their
performances close to those of the whole-trained subjects
(Figure 19-A). In the block by FLOLS type interaction, subjccts
trained with the COMMAND and CONVENTIONAL displays had high
(error :,;cores a t  the start of transfer, whereas subjects trained!
with the RATE display showed good transfer performance
immediately (Figure 19-B). However, after only a few trials,
all groups were performing well.

'19
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The ATARI covariate was highly significant and accounted
for an average of 27% of the between-subjects experimental
variance in the segments.
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SECT ION IV

DI SCUS SI ON

Of the two sets of data provided by i transfer-of-training
study, only the transfer set jt-ov iie e\,idence of differenti a
training effectiveness. As arjued by Salmoni, Schmidt, and
Walter (1984) , tr en ds ir tiet tr, ninj data nay be the result ,f
transient performance effects, and may not reflect any
relatively permanent difference_; in learning. The training dat-
are discussed here specifically to ensure that they follow a
reasonable pattern, and because the trends may assist in the
explanation of trends in the transfer data. Thus, the following
discussion of differential training effectiveness will rely
primarily on the transfer data.

TRAINING PERFORMANCE

Substantial learning occurred in the training phase of the
e):periment as evidenced by the reliable block (learning) effects
and the amount of variance accounted for by these effects for
all measures of performance.

TA;K EFFECT. There was no difference between training
performance of the part-task and the whole-task groups on any
j ids lope measures of performance. Hence, the part-task method
appears to have been successful in providing an effective
(although not superior) learning environment for glideslope
tr -ac k in,.I .

FrII inig p,- r formance of thIe part-task subjects versus
wJ I, <-.task :;nb j ect: was rel iably better on anqle-of-attack
"'_' r, . Thji, may have been the result of the greater demand on

_dr,,11! r ol for thIe part-task group. The view of th-
r rr ..r in t, p rt-task condition was sl ight]y different as a

1 ,n . Of iv- n,', ,i to start with an, to maint ain zero vorti i
,. "ty tI '; 7 'n gi ideslope. As it took less attitude chang e

. _ ar - t -k condition aj oppo se.d to the whole-t, t
",, .Ition to lose sight of the aircraft carrier beneath the no,e

' ....ckp , sebjct may have te nded to i imit their at titud,,
in in t he part-task condition.

'I ;'. iht h I r (c t i in o [ If i z, 'nmd t , k t.y)e W

1)1//T hg- 'Ime lar,ge FLOLS when used in the whole-task cond it ian
w4,; , tective in hel.ping subjects learn ql ideslope trackinI
;k iIIs in the simulator more quickly. However, the large FLOSi_
' ' 11,,t a:; ,tfe :Live when used in the part-task condition. A
pre:;ent there is no obvious. reason that part-task performan:
wo u 1d be poorer with a 1a rg e FLOL.; than wit h a sia 11 F1, Lo'.

-
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FLJSTYPE. There were no reliable t r a ining a d van ta g es W ith
e2i th1e r the RATE o r COMMAND displays. Th e Se r e SuIt S a r

*surprising considering bo th t h- RATE anld COMMAND d is pla-3y
sgicaty improved glideslope or a ck ini jfor experienced

triefr pilots (Ka L) e t al .,198!) . hoevr tey a r.
c cri si St e nt wi th d a to- f rom Westra (198,2) ;h r als-o fa)und n,-,
training, advantage with the COMMAND display-1, in earl y learning of
t-h e carrier-landing ta s k. ThUS, i t appears that ea rly
gl Iid eslo pe trac k ing pe r formance I limiited by the students'
ab5ility to properl ,y execute the control movements. Considerable
experience, with a concomitant improvement in motor skill, seems
necessary be foe trio, supplementary rate information can assist-
glideslope tracking performance.

TRAN5FER PERFORMANCE

TAS K TY P :. TheQ r e s uIts i nd ic a te thatL glI id es lope control
f - o .w ii nj) part -task trai nnig was niot as acc Urtat as i t was a fte r
; ,jle-tAsk trrainin. Transfer from the pa rt task produced poo r

0 t2adrl1y transfer in relation to transfer from the whole task, and
this disadvantage did niot appear to be entirely overcome by thle
or l o f transfer. There was a three-way interaction which
injice:i~e that part-task practice with the RATE display and

* ~ sial l FLOLS was as efci for gl ideslope control as was
who~ie-task practice. However , whilIe the po we r to test this
overall interaction was adequate, there was niot enough power to
rJ_,rve its interpretation in relation to paired comparisons of

* c~ ~l Nevertheless, the implications of this interaction are
i:oportant and will be discussed in the following paragraphs

togeherwith other task-type trends.

T:! cajrr~er lan-dingj task is difficult and, rI u r is hin
dar'i- rt ior)n oft i ts mo to r components . Prev ious part-task
.r,, hasi, nd icaited that ii knowledge of comiponent interaction
I es sa r tL tr a in a task with interdependent comnponents.
a' :~ ndNaylo)r (1962) argued that smlrt tohe trcinf-for

k I L; r n( eded for effective learning of complex L.1S'
* LI', ii ' ' f :;milarity between train ingj and transfer t a,"

h Iv in (I : t od toC the rfla t ive i nietf i c i e ny f
Ij sJhe'l fi i .l ~ tlwv . nd:; i[

II Iittt iod it. i on to the lack of ,similarity betweoc:
In l 'r tas k:; mtothet fac t.o r relate d t to:t

!,j~~ ~ ~ t[ f I Ito pr"' it n ;i f.r am thiIe me ( t- ha1-1 I n J) aI
o 2'c~ri n r perormr.:e.

the- -,rr ai intorma'tion tr-!'. the mea2,thalll is at[ zero)-., rt-
1l 11'n; S y) . Howe:_ver, time! 1 1 in er Jan 11 t thle FLOIS

))a < lnj the apral to th car L-r ier so t hat thlit
*~~~~ ti 1 wo i n(-nor e ;na v a o id aI r r-o 1- in the t

t1 il ill,it . ,I ion sle m 'I ,;m i 1 yo ill t 11 r tei 1

ri. 'f mm Ipp 'i. )Ih ImI li' 1) r -t m c:u)ri t, ion, suLbject;
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practiced gi ideslope control at onl y one point al on tcLf
glideslope. While changes in display gain were not considerud
critical to learning, effective glideslope control, especially
in the close- in segment, demands an awareness of anti i i Lpa ted
meatball movement and appropriate control responses. The FL()L
display may not have been sensitive enough at the point at which
the part-task subjects practiced glider"Iape control to enahle
effective learning ot rate interpretation skills from the
meatball. The glideslope control techniques that were learned
were probably based primarily on displacement error. Thus, the
part-task trained subjects may have been at a distinct
disadvantage, at time of transfer, in relation to their ability
to make judgments about rates of glideslope deviations.

The addition of the RATE display appears to have helped the
part-task subjects, who trained with the small FOLS, to follow
the alides.ope more accurately in the close-in segment. These
subjects may have been able to learn so(me rate interpretation
skills for transfer to the whole task. However, such an
explanation does not suggest why part-task subjects trained with
the large FLOLS did not similarly benefit from the addition of
the RATE elements in traininq. Perhaps there is a confounding
problem for part-task training with the RATE display and large

SLOL in transferring to the small FLOLS. Unfortunately, the
statistical power for comparison of pairs of cells was not
adequate to ascertain the reliability of this result.

As noted earlier, AOA control in training was better LCr
part-trained subjects. This advantage carried over to early

transfer , al though the effect was brief and was statistic'- a
.si.ni f icant only for the m idd Ie segment on which the pat

ui j e ct.! were trained. Never t h te ss o , this ir Id ira -J
I- nco u r ;g ing for the part-task training strategy since AOA

7ontrol is considered to be as important as glideslope on t ro .
A training strategy that could provide superior training on AOA
control, a,tong ;-hit adecjuate training on glid, lope control for
the carrier-landing task, would be beneficial.

AL; expected , a moderate amount oh transition traini i i.
1 he whole task was sufficient to coordiiate t:e skills es'sentiai
for lateral control. In addition, it is expected t hat the

- - amount of transi tion training to coordinate lateral cont-rol
would ho much, less for students who lhave some flight experience.

I I nmm.ry, th e part-task traIning pr celire tested honeL( -,
may be .. , u ,-fr ,Ilid-eslop, tra,iii J inst ruct ion if it c,,n ec
] rm expens ive than whole-task train inj. Ir addition, it d id
pr ''i( ., br ie' I and poss i hi y ue: t f f ] : h-ncemen t of ACA.
low -,v,, , w i a t K to part- task tr i in , i I pr )vile j srme po.sitIv

t triI:;f ,r iii r, -ltior to B]t iwsi lope t I :c king , it. wa I not ao I
e c i i eI t aLe whole-task tra i ing. The par t- t.l sk traini l

t rf egJy YMighIt )e( further refined to L)%' ide better transfer in
relation to gI ideslope tracking, possibly by posi tioning the

47
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simulated aircraft closer to the touchdown area or by
manipulating the gain of the meatball. This technique offers
some promise as a relatively inexpensive method for early
carrier-landing training, although further research seems
necessary to establish its value.

FLOLS TYPE. There were no significant differential transfer
effects on RMS glideslope tracking after training with the
CONVENTIONAL, RATE, or COMMAND displays. However, the
improvement evident in transfer for all these groups was not as
noticeable for the group trained with the COMMAND display. With
this particular display it was possible to ignore the
conventional displacement information entirely, so that subjects
could have become dependent on the supplementary command
information. Thus, some difficulty in transitioning to the
CONVENTIONAL display would be expected if subjects had not
learned to interpret the displacement information with
reasonable efficiency, and this may account for the smaller
improvement in transfer following training with the COMMAND
display.

There were some minor differential transfer effects with
other measures resulting from the use in training of the
CONVENTIONAL, RATE, and COMMAND displays. AOA control was
better following training with the COMMAND display and poorer
following training with the RATE display. Subjects who learned
with the COMMAND display apparently made glideslope corrections
with power (correct procedure), while subjects trained with the
R ATE display seem to have preferred pitch corrections. While it
is easier to track glideslope by adjusting pitch attitude, it is
not the correct technique for carrier landings. Pitch
adjustments for glideslope tracking are not only dangerous
in-close, but can lead to incorrect airspeed and pitch attitude
at touchdown, both of which can result in structural damage to
the aircraft.

There was a marked increase in AOA error for the COMMAND
,t'-1hnod group at the end of transfer. This indicates that for
snme tinexpected reason, subjects started using more pi tch
ad] u.;tment; to track glideslope. This large increase in AOA
error is inconsistent with the rest of the transfer data and may
hav been a result of fatigue. It is, however, difficult to
;(Jgqe!Jt why only one group would suffer the effects of fatigue
at this point.

,ome differential transfer effects were also apparent with
P/_I'11j e glideslope error. Subjects tended to fly above the
lIJd,.,;lope in early transfer trials and this tendency was more
o xtrefmlf after training with the CONVENTIONAL and COMMAND
• lispays than after training with the RATE display. This bias
doe(s not necessarily reflect a difference in overall performanct,

. quality, but it may be important from an operational viewpoint
becau;e higher approaches often result in a bolter. Thus, RATE

48
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training seems to offer the benefit of discouraging high
approaches.

The concept of reduced workload would suggest that if a
, first-order display assisted glideslope control, it may also

assist lineup control because the subject could divert some of
his attention to lineup control (Kaul eL al., 1980). The RATE

• display did encourage better lineup control although this effect
again occurred only in early transfer trials. However, there
was a lineup problem in the middle segment for subjects trained
with the COMIMANP display. The COMMAND display may have
attracted more than its share of attention to the detriment of
lineup, although this was not apparent in the training data.
Lineup control was better for the COMMAND display in the
close-in segment, but in an operational environment, a large
lineup error in the middle segment is to be avoided because it
may result in a wave off prior to reaching the close-in segment.

In summary, although there were some differential transfet
effects resulting from the use in training of the RATE and
COMMAND displays, there was not a significant performance
advantage in glideslope control with either display. Previous
research at the VTRS had shown a significant performance
advantage in glideslope control for experienced pilots using the
COMMAND and RATE displays (Kaul et al., 1980). However,
subsequent research at the VTRS found no performance or transfer
advantage with the COMMAND display for pilots who were taught
carrier landing in the simulator (Westra, 1981). Thus, either
pilots who are in the early stages of learning the carrier
landing task do not benefit from the command display or the
proper method of using it in training has not been found. RATE
and COMMAND training did have some minor benefits on average
glideslope error and on RMS AOA error. This raises the
possibility that these displays might be used for remedial
correction of specific bad habits. However, further evaluation
of these displays is needed to thoroughly define their training
value. For the present, it is suggested that the RATE and
COMMAND displays should not be introduced to pilots ontil the'y
ha v e become carrier qualified with, the conventional F L0LS.

FOv,; SIZE. Transition from a large to a small FLOLS produced
rw s; ign ificant advantages or di sadvantages on g1 i desl ope

dimensions of performance. While there were sme :ignificmt
interaction effects from comparing trial blocks 6-10 and 21-25
for RMS glides],ipe error, they appear to be ur, impor tin f()r
training issues. Since there were no apparent negative effects
in initial transfer from large to small FLOLS, and tho
interactions were weak, the significant effects were not judqJJ
to be operationally important.

There were some AOA effects resulting from the manipulation
of FLOLS size. These effects were inconsistent across segments,
with transition from the large FLOLS producing relatively poor
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AOA control scores in the middle segment in early transfer, but

relatively good AQA control scores in the close-in segment in

later transfer. Thus, there may be a short-lived problem for

AOA control in transfer following the use of a large FLOLS in
training, but this would appear to be outweighed by the longer
term benefit that is evident with the crucial close-in segment.

In summary, transfer from a large to a small FLOLS had no
detrimental effects on glideslope performance, but there were
some effects on AOA control. Overall, these effects were

* considered to favor training with the large FLOLS, but there may
be a possible difficulty early in transfer. However, Navy
flight students are likely to understand the need for good AOA
control far better than did the college students used in this
experiment, and sufficient care during instruction should avoid
any possible negative consequences from instruction with a large
FLOLS. Thus, it is concluded that the larger FLOLS can provide
satisfactory training for the carrier landing task.
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SECTION V

CONCLUSIONS

A quasi-transfer-of-training study was conducted with 3(
flight-naive subjects to investigate a segmentation method of
part-task training and two methods of visual augmentation for
teaching simulated carrier landings. One visual enhancement
involved adding two types of descent rate information
(designated RATE and COMMAND) to the FLOLS display. The other
visual enhancement was enlargement of the FLOLS display. The
experimental sequence consisted of 30 training trials with
instructional feedback under a particular experimental
condition, followed by 30 test trials with no instructional
feedback under the criterion condition (whole task with
conventional and small FLOLS).

The segmentation method of part-task training used here was
not as effective as was whole-task training. However, the
part-task manipulation was extreme, and apparently was less
effective because students were unable to practice some critical
dimensions of the task. Nevertheless, part-task subjects did
learn some skills that could be applied to the whole task.
There is also a realistic possibility that some adjustments in
the way the part-task procedure is set up would further enhance
its effectiveness. Further development may permit this
procedure to be as effective as the backward chaining method of
piart training that has been shown to be very effective for
carrier-landing instruction (Wightman, 1983). Thus, part-task
training shows promise as an effective training technique for
the carrier-landing tasks, particularly considering the fact
that it would permit the use of a relatively inexpensive
training device.

Previous studies at the VTRS had shown a significant
performance advantage in glideslope control with the COMMAND and
RATE displdys for experienced carrier pilots, but no performance
of transfer advantage for student pilots who were taught carrier
landings in the simulator. The strong performance advantage tor
experienced pilots had prompted a further test of the training
effectiveness of the two special FLOLS displays. In spite of
some variations in experimental procedures, the results were
essentially similar to those of the previous training study.
There is apparently no general performance or training benefit
from the RATE or the COMMAND display with flight-naive subjects
or with pilots who have no prior carrier landing experience.
There were, however, some minor differential transfer effects
resulting from the use in training of the CONVENTIONAL, RATE,
and COMMAND displays. These might be useful in special remedial
situations and may have some implications for the way these
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(iisploys are introduced into the fleet as permanent guidance
systems. For the present, it is suggested that the RATE and
COMMAND display should not be introduced to pilots until they
have become carrier qualified with the conventional FLOLS.

Possibly, the most important finding of this study is that
transfer from a large to a small FLOLS has no general
detrimentai t fects. Representation of the FLOLS is a critical
element of a carrier landing trainer, and could add
substantially to the cost of the simulator. The fact that a
larger FLOLS can provide satisfactory training will permit a
less expensive approach to simulating the FLOLS. A possible
difficulty with AOA control in early transfer was noted, but
sufficient care in training should overcome this potential
problem.
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Effect Size
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Power

S.Alp - .( -la1 .27 .84

Level .10 .18 .40 .92

Close-In Segrient

Effect Size
Small Medium Large

RMS Glideslope .70 1.42 3.19
Err

Power

Alpha .05 .09 .22 .74

Level .10 o16 .33 .85
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APPENDIX B

TRAINING DATA SUMMARY TABLES

TABLE B-I. REPEATED MEASURES ANALYSIS OF COVARIANCE OF RMS

GLIDESLOPE ERROR FOR THE MIDDLE SEGMENT DURING TRAINING

Source of Sum of Mean Proportion
Variance Squares df Squares F of Variance

Between Factor

Task (Ta) .219 1 .219 .62 NS
FLOLS Size (FS) .204 1 .204 .58 NS
FLOLS Type (FT) .539 2 .270 .76 NS
Ta x FS 1.433 1 1.433 4.06* .11
Ta x FT .820 2 .410 1.16 NS
FS x FT .765 2 .382 1.08 NS
'Ia x FS x FT .473 2 .236 .67 NS
Covariate 1.02 1 1.022 2.90 NS
Error 8.110 23 .353

Within Factor

Blocks (B) 3.675 5 .735 27.89*** .41
B x Ta .166 5 .033 1.26 NS
B x E .233 5 .047 1.77 NS
B x FT .163 10 .016 .62 NS
B x Ta x FS .449 5 .090 3.41*** .05
B x ra x FT .183 10 .018 .70 NS
B x FS x FT .701 10 .070 2.66*** .08
B x Ta x FS x FT .228 10 .023 .86 NS
Error 3.162 120 .026

• :P<.1o
**:P<.05

•***:P< .01
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TABLE B-2. REPEATED MEASURES ANALYSIS OF COVARIANCE
OF RMS GLIDESLOPE ERROR FOR THE
CLOSE-IN SEGMENT DURING TRAINING

Source of Sum of Mean Proportion
Variance Squares df Squares F of Variance

Between Factor

Task (Ta) .082 1 .082 .21 NS
FLOLS Size (FS) .044 1 .044 .11 NS
FLOLS Type (FT) .402 2 .201 .51 NS
Ta x FS 1.574 1 1.574 4.00* .10
Ta x FT 1.329 2 .665 1.69 NS
FS x FT .722 2 .361 .92 NS
Ta x FS x FT 1.124 2 .562 1.43 NS
Covariate .744 1 .744 1.89 NS
Error 9.053 23 .394

------------------------------------------------------------------------------

Within Factor

Blocks (B) 4.804 5 .961 39.23*** .52
B x Ta .174 5 .035 1.42 NS
B x FS .178 5 .036 1.45 NS
B x FT .231 10 .023 .94 NS
B x Ta x FS .128 5 .026 1.04 NS
B x Ta x FT .320 10 .032 1.31 NS
B x FS x FT .378 10 .038 1.54 NS
B x Ta x FS x FT .147 10 .015 .60 NS
Error 2.939 120 .024

**:p<.05
***:p<.01
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TABLE B-3. REPEATED MEASURES ANALYSIS OF COVARIANCE OF AVERAGE

GLIDESLOPE ERROR FOR THE MIDDLE SEGMENT DURING TRAINING

Source of Sum of Mean Proportion
Variance Squares df Squares F of Variance

Between Factor

Task (Ta) 1817 1 1817 1.64 NS
FLOLS Size (FS) 417 1 417 .38 NS
FLOLS Type (FT) 1412 2 706 .64 NS
Ta x FS 5256 1 5256 4.76** .13
Tax FT 218 2 109 .10 NS
FS x FT 4396 2 2198 1.99 NS
Ta x FS x FT 66 2 33 .03 NS
Covariate 64 1 64 .06 NS
Error 25426 23 1105

Within Factor

Blocks (B) 41696 5 8339 11.91** .25
B x Ta 3957 5 791 1.13 NS
8 x FS 19419 5 3U9 .56 NS
B x FT 5360 10 536 .77 N5
B x Ta x F1; 791 5 1580 2.26* .05
B x Ta x FT 6r31 10 C)3 .95 NS

x x iS IT 59"1 1 .85 NS
B5 x Ta x F'S x FT 88018 111 880 1.26 NS
Lrror 84000 120 700

* P< (.05
* * * :P<.*



NAVTRAEQUIPCEN 81-C-0105-9

TABLE B-4. REPEATED MEASURES ANALYSIS OF COVARIANCE
OF AVERACE GLIDESLOPE ERROR FOR THE CLOSE-IN SEGMENT

DURING TRAINING

Source of Sum of Mean Proportion
Variance Squares df Squares F of Variance

Between Factor

Task (Ta) 1347 1 1347 .80 NS
FLOLS Size (FS) 14 1 14 .01 NS
FLOLS Type (FT) 4396 2 2198 1.31 NS
Ta x FS 7808 1 7808 4.64** .14
Ta x FT 21 2 11 .01 NS
FoS x FT 3045 2 1522 .90 NS
Ta x FS x FT 674 2 337 .20 NS
Covariate 250 1 256 .15 NS

. Error 38694 23 1682

Within Factor

Blocks (B) 61468 5 12293 12.02*** .25
B x Ta 5211 5 1042 1.02 NS
B x FS 3507 5 701 .69 NS
B x FT 15885 10 1588 1.55 NS
b x Ta x FS 16118 5 3223 3.15** .07
B x Ta x FT 5385 10 538 .53 NS
B x FS x FT 8022 10 802 .78 NS
B x Ta x FS x FT 6342 10 634 .62 NS
Error 122727 120 1022

*:p<.10

**:p <.05
***:p<.(l
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TABLE B-5. REPEATED MEASURES ANALYSIS OF COVARIANCE OF RMS
ANGLE-OF-ATTACK ERROR FOR THE MIDDLE SEGMENT DURING TRAINING

Source of Sum of Mean Proportion
Variance Squares df Squares F of Variance

Between Factor

Task (Ta) .1869 1 .1869 6.23** .17
FLOLS Size (FS) .0018 1 .1869 .06 NS
FLOLS Type (FT) .0281 2 .0140 .47 NS
Ta x FS .0057 1 .0057 .19 NS
Ta x FT .0679 2 .0339 1.13 NS
FS x FT .0099 2 .0049 .16 NS
Ta x FS x FT .0869 2 .0435 1.45 NS
Covariate .0002 1 .0002 .01 NS
Error .6902 23 .0300

Within Factor

Blocks (B) .1288 5 .0258 9.07*** .20
B x Ta .0313 5 .0063 2.20* .05
B x FS .0041 5 .0008 .29 NS
B x FT .0129 10 .0013 .46 NS
B x Ta x FS .0105 5 .0021 .74 NS
B x Ta x FT .0251 10 .0025 .88 NS
B x FS x FT .0757 10 .0076 2.67*** .12
B x Ta x FS x FT .0243 10 .0024 .86 NS
Error .3407 120 .0028

*:P<.10
**:p<.05

*** :p< .01

6
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TABLE B-6. REPEATED MEASURES ANALYSIS OF COVARIANCE OF RMS
ANGLE-OF-ATTACK ERROR FOR THE CLOSE-IN SEGMENT DURING TRANING

Source of Sum of Mean Proportion
Variance Squares df Squares F of Variance

Between Factor

Task (Ta) .4012 1 .4012 11.53*** .27
FLOLS Size (FS) .0001 1 .0001 .00 NS
FLOLS Type (FT) .0433 2 .0216 .62 NS
Ta x FS .0002 1 .0002 .00 NS
Ta x FT .0681 2 .0340 .98 NS
FS x FT .0147 2 .0074 .21 NS
Ta x FS x FT .1227 2 .0614 1.76 NS

• Covariate .0238 1 .0238 .68 NS
Error .8001 23 .0348

------------------------------------------------------------- ------------eeeeeeeeeeee

Within Factor

Blocks (B) .1931 5 .0386 10.44*** .23
B x Ta .0288 5 .0058 1.56 NS
B x FS .0043 5 .0009 .23 NS
B x FT .0270 10 .0027 .73 NS
B x Ta x FS .0112 5 .0022 .60 NS
B x Ta x FT .0142 10 .0014 .38 NS
B x FS x FT .0831 10 .0083 2.25** .10
B x Ta x FS x FT .0186 10 .0019 .50 NS
Error .4442 120 .0037

S
*:p<.10

* * :p< .05
** :p<.01
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TABLE B-7. MEAN GLIDESLOPE RMS ERROR (IN FEET)
FOR THE MIDDLE SEGMENT DURING TRAINING

Trial Means 1-5 6-10 11-15 16-20 21-25 26-30

Task (Ta)

Whole 74.9 32.0 23.7 24.1 22.3 17.4
Part 56.1 37.2 27.0 16.4 15.3 15.8

FLOLS Size (FS)

Small 65.2 34.3 21.1 20.1 18.5 17.4
Large 65.9 35.0 29.6 20.5 19.2 15.8

O FLOLS Type (FT)

Conventional (Cv) 58.9 35.5 26.7 18.1 14.1 13.5
Rate (Ra) 78.5 32.4 23.1 18.7 17.9 16.6
Command (Cm) 59.5 36.0 26.3 24.0 24.4 19.7

65
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TABLE B-8. MEAN GLIDESLOPE RMS ERROR (IN FEET)
FOR THE CLOSE-IN SEGMENT DURING TRAINING

Trial Means 1-5 6-10 11-15 16-20 21-25 26-30

Task (Ta)
W ~ 9hole 75.8 24.3 19.7 17.6 16.0 12.2

Part 68.2 46.4 26.6 16.7 16.6 16.9

FLOLS Size (FS)

Small 67.1 34.6 22.0 19.0 16.6 14.1
Large 77.0 36.1 24.3 15.3 16.1 14.9

FLOLS Type (FT)

Conventional (Cv) 72.8 37.8 28.6 15.6 13.0 13.1
Rate (Ra) 90.4 30.5 18.4 15.9 15.9 14.4
Command (Cm) 53.3 37.6 22.4 19.9 20.0 16.1
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TABLE B-9. MEAN AVERAGE GLIDESLOPE ERROR (IN FEET, + HIGH)

FOR THE MIDDLE SEGMENT DURING TRAINING

Trial Means 1-5 6-10 11-15 16-20 21-25 26-30

Task (Ta)

Whole 52.9 17.6 9.2 7.8 1.4 1.6
Part 29.2 14.9 10.5 1.3 1.3 - .7

FLOLS Size (FS)

Small 40.3 21.0 6.5 6.3 6.5 .9
Large 41.9 11.5 13.2 2.8 -3.7 - .1

FLOLS Type (FT)

Conventional (Cv) 39.3 19.2 13.5 .4 3.0 -1.1
Rate (Ra) 56.8 20.8 5.5 8.1 1.5 .1

Command (Cm) 27.5 8.8 10.6 5.3 -. 4 2.3

67
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rABLE B-10. MEAN AVERAGE GLIDESLOPE ERROR (IN FEET, + = HIGH)
FOR THE CLOSE-IN SEGMENT DURING TRAINING

5-Trial Means 1-5 6-10 11-15 16-20 21-25 26-30

Task (Ta)

Whole 61.9 13.9 9.0 9.2 3.5 2.5
Part 38.4 21.6 10.8 3.9 1.8 -3.2

FLOLS Size (FS)

Small 41.4 17.2 9.0 9.8 5.4 - .6
Large 58.9 18.3 10.8 3.3 - .1 - .2

FLOLS Type (FT)

Conventional (Cv) 56.4 25.4 18.9 5.9 2.8 -1.5
Rate (Ra) 74.7 13.8 4.2 8.1 2.8 1.7
Command (Cm) 19.9 14.1 6.5 5.7 2.4 -1.3

68
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TABLE B-li. MEAN ANGLE-OF-ATTACK RMS ERROR (IN AOA UNITS)
FOR THE MIDDLE SEGMENT DURING TRAINING

5-Trial Means 1-5 6-10 11-15 16-20 21-25 26-30

Task (Ta)

Whole .754 .716 .607 .601 .621 .546
Part .811 .642 .478 .327 .291 .322

FLOLS Size (FS)

Small .791 .656 .583 .481 .450 .459
Large .775 .702 .502 .446 .462 .409

FLOLS Type (FT)

Conventional (Cv) .720 .716 .523 .410 .353 .403
Rate (Ra) .715 .540 .459 .438 .409 .401
Command (Cm) .912 .781 .645 .543 .606 .498
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TABLE B-12. MEAN ANGLE-OF-ATTACK RMS ERROR (IN AOA UNITS)
FOR THE CLOSE-IN SEGMENT DURING TRAINING

5-Trial Means 1-5 6-10 11-15 16-20 21-25 26-30

Task (Ta)

Whole 1.05 .845 .755 .747 .899 .663
Part .838 .717 .469 .321 .302 .345

FLOLS Size (FS)

Small .956 .750 .709 .523 .607 .536
Large .934 .813 .515 .544 .594 .472

FLOLS Type (FT)

Conventional (Cv) .946 .834 .457 .441 .401 .460
Rate (Ra) .954 .634 .589 .488 .630 .499
Command (Cm) .934 .876 .791 .673 .769 .552

0
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APPENDIX C

TRANSFER DATA SUMMARY TABLES

TABLE C-1. REPEATED MEASURES ANALYSIS OF COVARIANCE OF
RMS GLIDESLOPE ERROR FOR THE MIDDLE SEGMENT DURING TRANSFER

Source of Sum of Mean Proportion
Variance Squares df Squares F of Variance

* Between Factor

Task (Ta) .6-57 1 .657 4.90~** .13
FLOLS Size (FS) .070 1 .070 .52 NS
FLOLS Type (FT) .112 2 .05r6 .42 NE
Ta x FS .020 1 .020 .15 NS
Ta x FT .439 2 .219 1.64 NS
FS x FT .193 2 .096 .72 NS
Ta x F S x FT .322 2 .161 1.20 N S
Covariate .100 1 .100 .75 NS
Error 3.085 23 .134

Within Factor

Blocks (B) 1.087 5 .217 9.54*** .21
B x T a .302 5 .060 2.65** .06

*B x FS .131 5 .026 1.15 NS
B x FT .152 10 .015 .67 NS
B x Ta-, x FS .040 5 .008 .35 NS
B x Ta x FT .424 10 .042 1.86* .08
B x FS x FT .187 10 .019 .82 NS
B x Ta x FS x FT .171 10 .017 .75 NS

*Error 2.734 120 .023

* P. 10
**:P< .05

***<O

7 1
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TABLE C-2. REPEATED MEASURES ANALYSIS OF
COVARIANCE OF RMS GLIDESLOPE ERROR FOR THE

CLOSE-IN SEGMENT DURING TRANSFER

Source of Sum of Mean Proportion
Variance Squares df Squares F of Variance

Between Factor

Task (Ta) .550 1 .550 4.69** .10
FLOLS Size (FS) .000 1 .000 .00 NS
FLOLS Type (FT) .193 2 .096 .82 NS
Ta x FS .010 1 .010 .09 NS
Ta x FT .156 2 .078 .66 NS
FS x FT .094 2 .047 .40 NS
Ta x FS x FT .853 2 .426 3.64** .15
Covariate 1.061 1 1.061 9.05*** .19
Error 2.695 23 .117

Within Factor

Blocks (B) 1.923 5 .385 19.24*** .35
B x Ta .329 5 .066 3.29*** .07
B x FS .105 5 .021 1.05 NS
B x FT .270 10 .027 1.35 NS
B x Ta x FS .053 5 .011 .54 NS
B x Ta x FT .218 10 .022 1.09 NS
B X FS X FT .113 10 .011 .56 NS
B x Ta x FS x FT .084 10 .008 .42 NS
Error 2.398 120 .020

* < . 10

*** :p< . 01.0

* 72
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TABLE C-3. REPEATED MEASURES ANALYSIS OF COVARIANCE OF

AVERAGE GLIDESLOPE ERROR FOR THE MIDDLE SEGMENT DURING TRANSFER

Source of Sum of Mean Proportion
Variance Squares df Squares F of Variance

Between Factor

Task (Ta) 7706 1 7706 9.58*** .23
FLOLS Size (FS) 179 1 179 .22 NS
FLOLS Type(FT) 2330 2 1165 1.45 NS
Ta x FS 17 1 17 .02 NS
Ta x FT 1919 2 960 1.19 NS
FS x FT 917 2 459 .57 NS
Ta x FS x FT 947 2 474 .59 NS
Covariate 354 1 355 .44 NS
Error 18493 23 804

Within Factor

Blocks (B) 6175 5 1235 5.71*** .13
B x Ta 6696 5 1339 6.19*** .14
B x FS 817 5 163 .76 NS
B x FT 1800 10 180 .83 NS
B x Ta x FS 445 5 89 .41 NS
B x Ta x FT 2128 10 212 .98 NS
B x FS x FT 1666 10 167 .77 NS
B x Tax FS x FT 1201 10 120 .56 NS

Error 25945 120 216

*:p<.10
** :p< .05

* : p< . 01

4 73
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TABLE C-4. REPEATED MEASURES ANALYSIS OF COVARIANCE OF
*AVERAGE GLIDESLOPE ERROR FOR THE CLOSE-IN SEGMENT DURING TRANSFER

Source of Sum of Mean Proportion
Variance Squares df Squares F of Variance

Between Factor

Task (Ta) 2498 1 2498 4.17* .12
FLOLS Size (FS) 5 1 5 .01 NS
FLOLS Type (FT) 1121 2 560 .94 NS
Ta x FS 545 1 545 .91 NS
Ta x FT 496 2 248 .41 NS
FS x FT 297 2 149 .25 NS
Ta x FS x FT 892 2 446 .74 NS
Covariate 421 1 421 .70 NS
Error 13766 23 599

Within Factor

Blocks (B) 8020 5 1604 8.18*** .18
B x Ta 4853 5 970 4.95*** .11
B x FS 533 5 107 .54 NS
B x FT 1912 10 191 .97 NS
B x Ta x FS 923 5 185 .94 NS
B x Ta x FT 2370 10 237 1.21 NS
B x FS x FT 938 10 94 .48 NS
B x Ta x FS x FT 726 10 73 .37 NS
Error 23543 120 196

*:p<.10
**:p<.05

*** :p<.01

74

. *-.



NAVTRAEQUIPCEN 81-C-0105-9

TABLE C-5. REPEATED MEASURES ANALYSIS OF COVARIANCE OF RMS
ANGLE-OF-ATTACK ERROR FOR THE MIDDLE SEGMENT DURING TRANSFER

Source of Sum of Mean Proportion
Variance Squares df Squares F of Variance

Between Factor

Task (Ta) .0357 1 .0357 1.57 NS
FLOLS Size (FS) .0121 1 .0121 .53 NS
FLOLS Type (FT) .0491 2 .0245 1.08 NS
Ta x FS .0037 1 .0037 .16 NS
Ta x FT .0287 2 .0143 .63 NS
FS x FT .0046 2 .0023 .10 NS
Ta x FS x FT .0353 2 .0177 .78 NS

4 Covariate .0037 1 .0037 .16 NS
Error .5227 23 .0227

Within Factor

Blocks (B) .0124 5 .0024 4.72*** .10
B x Ta .0051 5 .0010 1.93* .04
P x FS .0045 5 .0009 1.72 NS
B x FT .0127 10 .0013 2.43** .10
B x Ta x FS .0084 5 .0017 3.21*** .07
B x Ta x FT .0045 10 .0004 .86 NS
B x FS x FT .0068 10 .0007 1.29 NS
B x Ta x FS x FT .0085 10 .0009 1.62 NS
Error .0629 120 .0005

* p< . 10
** p< . 05

* ** :<. 1
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TABLE C-6. REPEATED MEASURES ANALYSIS OF COVARIANCE OF RMS
ANGLE-OF-ATTACK ERROR FOR THE CLOSE-IN SEGMENT DURING TRANSFER

* Source of Sum of Mean Proportion
Variance Squares df Squares F of Variance

*Between Factor

Task (Ta) .0116 1 .0116 .54 NS
FLOLS Size (FS) .0017 1 .0017 .08 NS
FLOLS Type (FT) .0482 2 .0241 1.12 NS
Ta x FS .0011 1 .0011 .05 NS
Ta x FT .0071 2 .0035 .16 NS
FS x FT .0197 2 .0099 .46 NS

* Ta x FS x FT .0407 2 .0204 .95 NS
Covariate .0687 1 .0687 3.20* .10
Error .4939 23 .0215

Within Factor

Blocks (B) .0199 5 .0040 2.23* .05
B x Ta .0054 5 .0011 .61 NS
B x FS .0166 5 .0033 1.87 NS
B x FT . 23 10 .0022 1.25 NS
[3 x Ta x FS .0199 5 .0040 2.24* .05
B x Ta x FT .0213 10 .0021 1.20 NS
B x FS x FT .0238 10 .0024 1.34 NS
B x Ta x FS x FT .0202 10 .0020 1.14 NS
Error .2134 120 .0018

K':X . 10

** :p<. (05

*** :p(<.01
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TABLE C-7. REPEATED MEASURES ANALYSIS OF COVARIANCE OF RMS
LINEUP ERROR FOR THE MIDDLE SEGMENT DURING TRANSFER

Source of Sum of Mean Proportion
Variance Squares df Squares F of Variance

Between Factor

Task (Ta) .003 1 .003 .01 NS
FLOLS Size (FS) .157 1 .157 .82 NS
FLOLS Type (FT) 1.112 2 .556 2.91* .09
Ta x FS .967 1 .067 .35 NS
Ta x FT .484 2 .242 1.27 NS
FS x FT 1.616 2 .808 4.23** .14
Ta x FS x FT .568 2 .284 1.49 NS
Covariate 3.416 1 3.416 17.91*** .29
Error 4.388 23 .191

-------------------------------------------------------------------------------

Within Factor

Blocks (B) .207 5 .041 1.16 NS
B x Ta .153 5 .031 .86 NS
8 x FS .108 5 .022 .61 NS
B x FT .326 10 .032 .92 NS
B x Ta x F'S .494 5 .099 2.78** .07
B x Ta x FT .175 10 .018 .49 NS

* B x FS x FT .481 10 .048 1.35 NS
B x Ta x FS x FT .400 10 .040 1.13 NS
Error 4.268 120 .036

*:p<.10
" **:p<(05

***:p<.01

.
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TABLE C-8. REPEATED MEASURES ANALYSIS OF COVARIANCE OF RMS

LINEUP ERROR FOR THE CLOSE-IN SEGMENT DURING TRANSFER

Source of Sum of Mean Proportion
Variance Squares df Squares F of Variance

Between Factor

Task (Ta) .323 1 .323 1.41 NS
FLOLS Size (FS) .209 1 .209 .91 NS
FLOLS Type (FT) .735 2 .368 1.61 NS

Ta x FS .019 1 .019 .08 NS
Ta x FT .668 2 .334 1.46 NS
FS x FT 1.190 2 .595 2.60* .10
Ta x FS x FT .868 2 .434 1.90 NS
Covariate 3.101 1 3.101 13.55*** .25
Error 5.263 23 .229

Within Factor

Blocks (B) .495 5 .099 4.25*** .10
B x Ta .234 5 .047 2.01* .05
B x FS .128 5 .026 1.09 NS

B x FT .447 10 .045 1.92** .09
B x Ta x FS .159 5 .032 1.36 NS
B x Ta x FT .249 10 .025 1.07 NS
B x FS x FT .297 10 .030 1.27 NS
B x Ta x FS x FT .338 10 .034 1.45 NS
Error 2.798 120 .023

• _ *:p< .10
** :p<. 05

*** :p< .01
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TABLE C-9. MEAN GLIDESLOPE RMS ERROR
(IN FEET) FOR THE MIDDLE SEGMENT DURING TRANSFER

5-Trial Means 1-5 6-10 11-15 16-20 21-25 26-30

Task (Ta)

Whole 23.4 20.5 20.4 21.2 16.6 15.2
Part 47.6 29.6 23.9 21.4 20.7 20.6

FLOLS Size (FS)

Small 34.0 25.7 21.4 20.3 16.4 16.2
Large 37.0 24.4 22.8 22.3 21.0 19.5

FLOLS Type (FT)

Conventional (Cv) 41.8 24.3 19.2 21.2 16.8 15.7
Rate (Ra) 30.3 24.5 21.3 19.2 19.1 17.3
Command (Cm) 34.4 26.3 25.9 23.5 20.1 20.7

* 79
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TABLE C-10. MEAN GLIDESLOPE RMS ERROR (IN FEET)
FOR THE CLOSE-IN SEGMENT DURING TRANSFER

5-Trial Means 1-5 6-10 11-15 16-20 21-25 26-30

Task (Ta)

Whole 17.7 12.8 14.4 13.2 10.6 11.1
Part 44.6 21.6 19.3 15.8 14.7 14.8

FLOLS Size (FS)

Small 32.9 19.5 16.5 13.5 11.4 12.6
Large 29.3 14.9 17.2 15.5 13.8 13.4

FLOLS Type (FT)

Conventional (Cv) 36.3 20.5 14.9 13.4 11.8 10.2
Rate (Ra) 25.1 15.5 15.3 13.8 11.6 11.4
Command (Cm) 32.1 15.7 20.3 15.8 14.4 17.4
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TABLE C-11. MEAN AVERAGE GLIDESLOPE ERROR (IN FEET, + HIGH)
FOR THE MIDDLE SEGMENT DURING TRANSFER

5-Trial Means 1-5 6-10 11-15 16-20 21-25 26-30

Task (Ta)

Whole 5./ 5.5 6.2 11.4 4.9 3.0

Part 39.1 20.9 17.8 11.4 8.8 8.4

FLOLS Size (FS)

Small 20.2 13.6 14.4 11.2 4.8 2.0
Large 24.1 12.8 9.7 11.6 -8.9 9.3

FLOLS Type (FT)

Conventional (Cv) 31.0 19.4 12.4 13.8 6.5 3.6

Rate (Ra) 13.5 6.1 7.7 8.0 3.1 5.8
Command (Cm) 22.0 14.1 15.9 12.5 10.9 7.7

~ji
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TABLE C-12. MEAN AVERAGE GLIDESLOPE ERROR (IN FEET, + HIGH)
FOR THE CLOSE-IN SEGMENT DURING TRANSFER

- S-Trial Means 1-5 6-10 11-15 16-20 21-25 26-30

Task (Ta)

Whole 7.6 6.0 4.9 6.9 2.1 1.8
Part 36.0 12.1 9.6 5.7 6.4 6.1

FLOLS Size (FS)

SmaLl 22.7 10.6 8.4 5.9 2.3 1.3
Large 20.9 7.5 6.1 6.7 6.2 6.5

FLOLS Type (FT)

Conventional (Cv) 28.8 16.3 7.3 5.9 4.1 1.6
Rate (Ra) 12.8 4.7 3.9 5.2 2.7 3.3
Command (Cm) 23.9 6.1 10.5 7.8 6.0 6.8

0 82
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TABLE C-13. MEAN ANGLE-OF-ATTACK RMS ERROR (IN AOA UNITS)

FOR THE MIDDLE SEGMENT DURING TRANSFER

5-Trial Means 1-5 6-10 11-15 16-20 21-25 26-30

Task (Ta)

Whole .611 .549 .533 .535 .510 .522

Part .498 .426 .438 .423 .423 .508

FLOLS Size (FS)

Small .505 .446 .453 .454 .448 .518
Large .603 .529 .517 .504 .485 .511

FLOLS Type (FT)

Conventional (Cv) .551 .540 .484 .501 .465 .472
Rate (Ra) .634 .542 .578 .528 .522 .557

Command (Cm) .478 .380 .393 .407 .413 .514

* 83
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TABLE C-14. MEAN ANGLE-OF-ATTACK RMS ERROR (IN AQA UNITS)
FOR THE CLOSE-IN SEGMENT DURING TRANSFER

5-Trial Means 1-5 6-10 11-15 16-20 21-25 26-30

Task (Ta)

Whole .778 .698 .644 .615 .649 .671
Part .705 .617 .652 .652 .619 .721

FLOLS Size (FS)

Small .706 .624 .614 .617 .616 .776
Large .777 .691 .682 .659 .651 .615

FLOLS Type (FT)

Conventional (Cv) .717 .629 .676 .685 .640 .623
Rate (Ra) .899 .762 .693 .656 .675 .718
Command (Cm) .607 .580 .576 .574 .586 .746
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TABLE C-15. MEAN LINEUP RMS ERROR (IN FEET)
FOR THE MIDDLE SEGMENT DURING TRANSFER

5-Trial Means 1-5 6-10 11-15 16-20 21-25 26-30

Task (Ta)

Whole 50.5 44.5 40.6 49.4 46.9 46.5
Part 90.7 55.3 60.1 47.5 43.5 54.9

FLOLS Size (FS)

Small 63.4 49.2 45.8 39.4 40.7 49.1
Large 77.8 50.7 54.8 57.6 49.6 52.3

FLOLS Type (FT)

Conventional (Cv) 84.7 44.2 57.9 39.5 40.7 40.5
Rate (Ra) 53.4 46.8 41.5 38.1 39.3 38.5
Command (Cm) 73.6 58.7 51.7 67.8 55.6 73.0

4
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TABLE C-16. MEAN LINEUP RMS ERROR (IN FEET)
FOR THE CLOSE-IN SEGMENT DURING TRANSFER

5-Trial Means 1-5 6-10 11-15 16-20 21-25 26-30

Task (Ta)

Whole 27.2 21.4 21.2 24.9 22.3 22.0
Part 85.9 39.0 40.6 28.8 27.4 32.9

FLOLS Size (FS)

Small 51.9 32.0 28.8 21.5 24.1 25.7
Large 61.2 28.4 33.0 32.2 25.7 29.2

FLOLS Type (FT)

Coventional (Cv) 77.1 32.6 42.9 25.0 26.3 26.7
Rate (Ra) 33.4 25.2 22.5 21.7 20.8 20.6
Command (Cm) 59.1 32.9 27.3 33.8 27.4 35.1
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